當(dāng)我們需要匯總表中的數(shù)據(jù)而不是使用表中某一行數(shù)據(jù)時(shí),可以使用Mysql為我們提供的聚合函數(shù),在mysql中,常用的聚合函數(shù)有以下五個(gè):
- AVG:取平均值
- count:取統(tǒng)計(jì)值
- MAX:取最大值
- MIN:取最小值
- SUM:取和值
mariadb [world]> select SUM(Population) FROM city; +-----------------+ | SUM(Population) | +-----------------+ | 1429559884 | +-----------------+ 1 row in set (0.01 sec)
MariaDB [world]> SELECT SUM(Population) FROM city WHERE CountryCOde='CHN'; +-----------------+ | SUM(Population) | +-----------------+ | 175953614 | +-----------------+ 1 row in set (0.00 sec)
MariaDB [world]> SELECT COUNT(ID) FROM city WHERE CountryCode = 'CHN'; +-----------+ | COUNT(id) | +-----------+ | 363 | +-----------+ 1 row in set (0.00 sec)
關(guān)于COUNT,如果要統(tǒng)計(jì)有該表有多少行,千萬別用*作為參數(shù),因?yàn)閪影響性能,選某一列就好了。
MariaDB [world]> SELECT MIN(Population) FROM city WHERE CountryCode = 'CHN'; +-----------------+ | MIN(Population) | +-----------------+ | 89288 | +-----------------+ 1 row in set (0.00 sec)
MariaDB [world]> SELECT MAX(Population) FROM city WHERE CountryCode = 'CHN'; +-----------------+ | MAX(Population) | +-----------------+ | 9696300 | +-----------------+ 1 row in set (0.00 sec)
MariaDB [world]> SELECT AVG(Population) FROM city WHERE District ='Henan'; +-----------------+ | AVG(Population) | +-----------------+ | 383278.3333 | +-----------------+ 1 row in set (0.00 sec)
所以,我們看到,聚合函數(shù)通常用于數(shù)值上的計(jì)算。
以上,我們使用聚合函數(shù)時(shí),是對(duì)所有SELECT的數(shù)據(jù)進(jìn)行分組操作,假如我們想要查詢所有國家的城市數(shù),不得不多次使用WHERE對(duì)CountryCode進(jìn)行篩選。
MariaDB [world]> SELECT DISTINCT CountryCode FROM city; +-------------+ | CountryCode | +-------------+ | ABW | | AFG | ............... | ZWE | +-------------+ 232 rows in set (0.00 sec)
我們看到,在我們的數(shù)據(jù)表中,有232個(gè)國家,那么?是不是需要我們對(duì)這232個(gè)不同國家都使用一次COUNT(ID)才能統(tǒng)計(jì)每個(gè)國家的城市數(shù)量呢?其實(shí)不然。
我們可以使用分組查詢GROUP BY,什么叫分組呢? 分組查詢就是使用指定的一列或多列,對(duì)數(shù)據(jù)進(jìn)行邏輯分組(當(dāng)分組依據(jù)相同時(shí)被劃分為一組),假設(shè)有如下數(shù)據(jù):
MariaDB [world]> SELECT * FROM city LIMIT 5; +----+----------------+-------------+---------------+------------+ | ID | Name | CountryCode | District | Population | +----+----------------+-------------+---------------+------------+ | 1 | Kabul | AFG | Kabol | 1780000 | | 2 | Qandahar | AFG | Qandahar | 237500 | | 3 | Herat | AFG | Herat | 186800 | | 4 | Mazar-e-Sharif | AFG | Balkh | 127800 | | 5 | Amsterdam | NLD | Noord-Holland | 731200 | +----+----------------+-------------+---------------+------------+ 5 rows in set (0.00 sec)
我們使用GROUP BY CountryCode就是指定CountryCode作為分組依據(jù),所以1,2,3,4行他們被分為同一組,而5在另一個(gè)組。
- 通常分組是配合聚合函數(shù)來使用的,聚合函數(shù)對(duì)每個(gè)單獨(dú)的邏輯分組進(jìn)行匯總計(jì)算。
- GROUP BY子句中列出的每一列都必須是檢索列或有效的表達(dá)式(但不能是聚合函數(shù)),如果在SELECT中使用表達(dá)式,則必須在GROUP BY子句中指定相同的表達(dá)式,且不能使用別名。
- 除聚合函數(shù)外,SELECT語句中的每一列都必須在GROUP BY子句中給出。
- 如果分組中包含具有NULL值的行,則NULL將作為一個(gè)分組返回。
- GROUP BY子句必須出現(xiàn)在WHERE子句之后,ORDER BY子句之前。
MariaDB [world]> SELECT CountryCode,COUNT(ID) FROM city GROUP BY CountryCode; +-------------+-----------+ | CountryCode | COUNT(ID) | +-------------+-----------+ | ABW | 1 | | AFG | 4 | ........................... | ZMB | 7 | | ZWE | 6 | +-------------+-----------+ 232 rows in set (0.00 sec)
當(dāng)SELECT語句中使用WHERE子句時(shí),WHERE子句總在分組前進(jìn)行過濾。
MariaDB [world]> SELECT CountryCode,COUNT(ID) FROM city WHERE Population >= 1000000 GROUPP BY CountryCode; +-------------+-----------+ | CountryCode | COUNT(ID) | +-------------+-----------+ | AFG | 1 | | AGO | 1 | | ARG | 3 | | ARM | 1 | | AUS | 4 | ........................... | YUG | 1 | | ZAF | 1 | | ZMB | 1 | | ZWE | 1 | +-------------+-----------+ 77 rows in set (0.01 sec)
所以在分組中未出現(xiàn)的國家,沒有1000000人口的城市。
HAVING子句用于過濾分組后所得到匯總值的數(shù)據(jù),而HAVING支持的操作和WHERE子句是相同的。
例如:
MariaDB [world]> SELECT CountryCode,SUM(Population) AS Total_Population FROM city GROUP BY CountryCode HAVING Total_Population > 1000000; +-------------+------------------+ | CountryCode | Total_Population | +-------------+------------------+ | AFG | 2332100 | | AGO | 2561600 | | ARE | 1728336 | .................................. | ZAF | 15196370 | | ZMB | 2473500 | | ZWE | 2730420 | +-------------+------------------+ 108 rows in set (0.00 sec)